

Vacuum Chamber R&D for SXFEL Undulator

HU XIAO, LIU YIYONG, YIN LIXIN Shanghai Institute of Applied Physics, China 2014.10

Contents

1 Overview

2 Specifications

3 Undulator Chamber Prototype

4 Vacuum Test

5 Summary

SXFEL/DCLS

Overview

- The upcoming construction of Shanghai Soft X-ray Free Electron Laser Facility (SXFEL) and Dalian Coherent Light Source (DCLS) will use more than ten meters small gap undulators.
- ◆ Each undulator is 3 meters long and will work at a minimum gap of 9 mm.

SXFEL/DCLS Undulator Chamber

Specifications

Both oxygen-free copper and aluminum alloy vacuum chambers were designed and two prototypes were developed, respectively. Both of the chambers include three parts, copper or aluminum pipe, two flanges and a set of supports. Both copper and aluminum chamber pipes are manufactured by stretching.

- Long elliptical pipe stretching
- Long chamber brazing
- Inner surface polishing

Undulator Chamber				
Inner aperture (mm²)	6×15	5X11		
Thickness (mm)	0.75	0.5		
Material	OFHC	AI 6063		
Length (m)	3.2	3.2		
Pressure (Pa)	<10 ⁻⁵	<10-5		
Roughness (Ra)	<300nm	<300nm		

OFHC Prototype

Stretch Copper Pipe

Braze Flanges and supports

Radiation Facility MEDSI. 2014

OFHC Prototype

<u>Aluminum Prototype</u>

Parameters				
Aperture		5mm ×11mm		
Height		6mm		
Min. Thickn	ess	0.5mm		
Length		3270mm		
Material	Chamber	Aluminum Alloy		
	Flanges	SS316L-Al5053 Clad Metal		
	Support	SS		

Process

1. Stretch Al Chamber

3. Weld Flanges and Connect Support

Aluminum Prototype

Main points:

- 1、Tolerance
- 2、Enough Thickness for Welding
- 3. Cooling holes

Aluminum pipe after stretching

Height: 13mm

Aepture: 5mm×11mm

Aluminum Prototype

<u>Aluminum Prototype</u>

Al 6063

5×11

0.5 3.27

Al pipe CNC Machining @Shanghai, China

Inner Surface Polishing

- ➤ We use Abrasive Flow Polishing (AFP) method to polish the inner surface of the pipes.
- ➤ In AFP method, the high viscosity polishing fluid travels through the pipes to achieve the inner surface polishing

Copper Chamber Ra: 300nm~600nm

Ra—Al Chamber		
Before	After	
~200nm	~100nm	

Vacuum Test

Vacuum Test

- 1. Pressure is better than $2 \times 10^{-9} Torr$
- 2. Outgassing rate is very low

Vacuum Test

1#	2#	
Ion gauge (varian)	CCG (MKS)	
$4.6 \times 10^{-8} Torr$	$6.2 \times 10^{-8} Torr$	*
$1.4 \times 10^{-8} Torr$	$4.0 \times 10^{-8} Torr$	**

*10 hours after cool down form 6 hours 100°C baking ** 12 days after cool down

Summary

- > Two prototype of undulator chamber have been developed for the upcoming FEL facilities.
- ➤ Inner surface polishing and vacuum testing have been done and satisfied the requirement
- > Al-chamber will be used because of the cost

Thanks!